Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros













Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 165, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578457

RESUMEN

The DNA methylation is gradually acquired during oogenesis, a process sustained by successful follicle development. However, the functional roles of methyl-CpG-binding protein 2 (MeCP2), an epigenetic regulator displaying specifical binding with methylated DNA, remains unknown in oogenesis. In this study, we found MeCP2 protein was highly expressed in primordial and primary follicle, but was almost undetectable in secondary follicles. However, in aged ovary, MeCP2 protein is significantly increased in both oocyte and granulosa cells. Overexpression of MeCP2 in growing oocyte caused transcription dysregulation, DNA hypermethylation, and genome instability, ultimately leading to follicle growth arrest and apoptosis. MeCP2 is targeted by DCAF13, a substrate recognition adaptor of the Cullin 4-RING (CRL4) E3 ligase, and polyubiquitinated for degradation in both cells and oocytes. Dcaf13-null oocyte exhibited an accumulation of MeCP2 protein, and the partial rescue of follicle growth arrest induced by Dcaf13 deletion was observed following MeCP2 knockdown. The RNA-seq results revealed that large amounts of genes were regulated by the DCAF13-MeCP2 axis in growing oocytes. Our study demonstrated that CRL4DCAF13 E3 ubiquitin ligase targets MeCP2 for degradation to ensure normal DNA methylome and transcription in growing oocytes. Moreover, in aged ovarian follicles, deceased DCAF13 and DDB1 protein were observed, indicating a potential novel mechanism that regulates ovary aging.


Asunto(s)
Proteína 2 de Unión a Metil-CpG , Ubiquitina-Proteína Ligasas , Femenino , Humanos , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , ADN/metabolismo , Metilación de ADN , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Oocitos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
Epigenetics Chromatin ; 16(1): 11, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076890

RESUMEN

BACKGROUND: Epigenetic reprogramming is involved in luteinizing hormone (LH)-induced ovulation; however, the underlying mechanisms are largely unknown. RESULTS: We here observed a rapid histone deacetylation process between two waves of active transcription mediated by the follicle-stimulating hormone (FSH) and the LH congener human chorionic gonadotropin (hCG), respectively. Analysis of the genome-wide H3K27Ac distribution in hCG-treated granulosa cells revealed that a rapid wave of genome-wide histone deacetylation remodels the chromatin, followed by the establishment of specific histone acetylation for ovulation. HDAC2 phosphorylation activation coincides with histone deacetylation in mouse preovulatory follicles. When HDAC2 was silenced or inhibited, histone acetylation was retained, leading to reduced gene transcription, retarded cumulus expansion, and ovulation defect. HDAC2 phosphorylation was associated with CK2α nuclear translocation, and inhibition of CK2α attenuated HDAC2 phosphorylation, retarded H3K27 deacetylation, and inactivated the ERK1/2 signaling cascade. CONCLUSIONS: This study demonstrates that the ovulatory signal erases histone acetylation through activation of CK2α-mediated HDAC2 phosphorylation in granulosa cells, which is an essential prerequisite for subsequent successful ovulation.


Asunto(s)
Histonas , Folículo Ovárico , Femenino , Ratones , Animales , Humanos , Folículo Ovárico/metabolismo , Histonas/metabolismo , Fosforilación , Ensamble y Desensamble de Cromatina , Células de la Granulosa/metabolismo , Hormona Luteinizante/metabolismo , Hormona Luteinizante/farmacología , Gonadotropina Coriónica/farmacología , Gonadotropina Coriónica/metabolismo , Histona Desacetilasa 2/metabolismo
3.
Braz J Med Biol Res ; 54(8): e10685, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34037092

RESUMEN

Tanshinone I (Tan I) is one of the main bioactive ingredients derived from Salvia miltiorrhiza Bunge, which has exhibited antitumor activities toward various human cancer cells. However, its effects and underlying mechanisms on human chronic myeloid leukemia (CML) cells still require further investigation. This study determined the effects and mechanisms of anti-proliferative and apoptosis induction activity induced by Tan I against K562 cells. The cytotoxic effect of Tan I at varying concentrations on K562 cells was evaluated via MTT assay. Cell apoptosis was further investigated through DAPI staining and flow cytometry analysis. The expression levels of apoptosis-related proteins and activities of JNK/ATF2 and ERK signaling pathways were analyzed by western blot. Quantitative PCR was performed to further determine mRNA expression levels of JNK1/2 and ERK1/2 after Tan I treatment. The results indicated that Tan I significantly inhibited K562 cell growth and induced apoptosis in a concentration- and time-dependent manner. It induced significant cellular morphological changes and increased apoptosis rates in CML cells. Tan I promoted the cleavages of caspase-related proteins, as well as increased the expression levels of PUMA. Furthermore, Tan I significantly activated JNK and inhibited ATF-2 and ERK signaling pathways. The mRNA expression levels of JNK1/2 and ERK1/2 were up-regulated by Tan I, further confirming its regulatory effects on JNK/ERK signaling pathways. Overall, our results indicated that Tan I suppressed cell viability via JNK- and ERK-mediated apoptotic pathways in K562 cells, suggesting that it might be a promising candidate as a novel anti-leukemia drug.


Asunto(s)
Abietanos , Leucemia Mielógena Crónica BCR-ABL Positiva , Abietanos/farmacología , Apoptosis , Línea Celular Tumoral , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico
4.
Braz. j. med. biol. res ; 54(8): e10685, 2021. graf
Artículo en Inglés | LILACS | ID: biblio-1249326

RESUMEN

Tanshinone I (Tan I) is one of the main bioactive ingredients derived from Salvia miltiorrhiza Bunge, which has exhibited antitumor activities toward various human cancer cells. However, its effects and underlying mechanisms on human chronic myeloid leukemia (CML) cells still require further investigation. This study determined the effects and mechanisms of anti-proliferative and apoptosis induction activity induced by Tan I against K562 cells. The cytotoxic effect of Tan I at varying concentrations on K562 cells was evaluated via MTT assay. Cell apoptosis was further investigated through DAPI staining and flow cytometry analysis. The expression levels of apoptosis-related proteins and activities of JNK/ATF2 and ERK signaling pathways were analyzed by western blot. Quantitative PCR was performed to further determine mRNA expression levels of JNK1/2 and ERK1/2 after Tan I treatment. The results indicated that Tan I significantly inhibited K562 cell growth and induced apoptosis in a concentration- and time-dependent manner. It induced significant cellular morphological changes and increased apoptosis rates in CML cells. Tan I promoted the cleavages of caspase-related proteins, as well as increased the expression levels of PUMA. Furthermore, Tan I significantly activated JNK and inhibited ATF-2 and ERK signaling pathways. The mRNA expression levels of JNK1/2 and ERK1/2 were up-regulated by Tan I, further confirming its regulatory effects on JNK/ERK signaling pathways. Overall, our results indicated that Tan I suppressed cell viability via JNK- and ERK-mediated apoptotic pathways in K562 cells, suggesting that it might be a promising candidate as a novel anti-leukemia drug.


Asunto(s)
Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Abietanos/farmacología , Apoptosis , Línea Celular Tumoral
5.
Onco Targets Ther ; 13: 9465-9479, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33061432

RESUMEN

INTRODUCTION: Pancreatic cancer remains one of the most lethal malignancies and has few treatment options. Saikosaponin D (SSD), a major bioactive triterpene saponin isolated from Bupleurum chinense, has been reported to exert cytotoxicity properties toward many cancer cells. However, the effects of SSD on pancreatic cancer have been little scrutinized. METHODS: Here, we investigated the effect of SSD on the proliferation and apoptosis of human pancreatic cancer BxPC3 and PANC1 cells and the mouse pancreatic cancer cell line Pan02. Cell viability was determined by MTT assays and cell apoptosis analyzed by DAPI staining and flow cytometry. Expression levels of apoptosis-regulating markers and activity of the MKK4-JNK signaling pathway were determined by Western blotting. The inhibitor SP600125 was applied to confirm the role of the JNK pathway in SSD efficiency. RESULTS: SSD significantly inhibited the proliferation of BxPC3, PANC1, and Pan02 cells in a concentration- and time-dependent manner. Flow-cytometry analysis indicated obvious apoptosis induction after SSD exposure. Furthermore, SSD significantly triggered cleavage of caspase 3 and caspase 9 proteins and increased the expression of FoxO3a. In addition, activity of the MKK4-JNK pathway was dramatically increased after treatment with SSD in BxPC3 cells. SSD obviously stimulated phosphorylation of JNK, cJun, and SEK1/MKK4 proteins within 30 minutes. The addition of SP600125 blocked the activation of SSD on the MKK4-JNK regulatory pathway and reversed the effects of SSD on proliferation inhibition and apoptosis induction in BxPC3 cells. CONCLUSION: These results revealed that SSD was capable of suppressing tumor growth and promoting apoptosis of pancreatic cancer cells via targeting the MKK4-JNK signaling pathway, indicating the possibility of further developing SSD as a potential therapeutic candidate for pancreatic cancer.

6.
Zhongguo Zhong Yao Za Zhi ; 44(22): 4837-4843, 2019 Nov.
Artículo en Chino | MEDLINE | ID: mdl-31872590

RESUMEN

The combination of morphological characteristics and DNA barcodes was used to a systematic study of Hippocampus spinosissimus,laying the foundation for rapid and accurate identification for the medical seahorse species. According to the reported literature and observation on seahorse samples,the typical characteristics of the H. spinosissimus include highly developed spiny,much short nose,single or double cheeks and strongly developed spines bordering pouch. Genomic DNAs of H. spinosissimus and other related seahorse species were extracted using the TIANamp Marine Animals DNA Kit. The COⅠ and ATP6 genes were amplified and sequenced in both directions. After the verification by Blast,the GC content,intraspecific and interspecific genetic distance,and the Neighbor joining( NJ) phylogenetic trees were analyzed by MEGA 7. The lengths of the COⅠ and ATP6 genes were 649 bp and 602-603 bp,respectively,with the average GC content of 39. 96% and 35. 37%. The maximum intraspecific genetic distances in H. spinosissimus based on COⅠ and ATP were both far less than the minimum interspecific genetic distance between H. spinosissimus and other seahorses,suggesting a significant barcoding gap. NJ analysis results of COⅠ and ATP6 exhibited that all H. spinosissimus species clustered together,indicating that the two DNA barcode could identify H. spinosissimus from other seahorses accurately and quickly. In addition,H. spinosissimus shared a close genetic relationship between H. kelloggi according to the NJ tree. Furthermore,there exits three stable subgroup structure of H. spinosissimus,indicating that COⅠ and ATP6 barcodes could be applied the indicator for the geographical ecology research of H. spinosissimus. The results obtained the typical morphological and molecular identification characteristics of H. spinosissimus,which played central roles for the development of species identification. This study provides an important basis data for expanding the medical seahorse resources and ensuring the safety of clinical medicine.


Asunto(s)
Código de Barras del ADN Taxonómico , Smegmamorpha/genética , Animales , Composición de Base , ADN , Filogenia
7.
Zhongguo Zhong Yao Za Zhi ; 44(8): 1509-1516, 2019 Apr.
Artículo en Chino | MEDLINE | ID: mdl-31090312

RESUMEN

Pancreatic cancer is the most common digestive tract tumor with an increasing incidence in recent years. The poor prognosis of pancreatic cancer is mainly because of the inability of detecting tumor at an early stage,its high potential for early dissemination,and its relatively poor sensitivity to chemotherapy. Most patients have lost the opportunity for surgery when they are diagnosed,which resulted in an urgent need for the development of more effective and safe therapies for pancreatic cancer. However,the current clinical cancer chemotherapy based on gemcitabine leads to poor prognosis in pancreatic patients. With the continuous research on the biological and cellular signaling pathways of pancreatic cancer,there have emerged a great many of novel agents,including new chemotherapeutic,targetable and immune-modulatory drugs,and some drugs have achieved encouraging results. Furthermore,as an alternative and supplementary method,traditional Chinese medicine has shown good application prospects in the field of pancreatic cancer treatment. This article reviews the current status of drug therapy for pancreatic cancer,summarizes the strength and weakness of existing therapeutic drugs in the application process,gives prospects of possible breakthroughs for the pharmacotherapy in the future,and provides certain new ideas and lessons for subsequent drug development.


Asunto(s)
Neoplasias Pancreáticas/tratamiento farmacológico , Predicción , Humanos , Medicina Tradicional China
8.
Mitochondrial DNA B Resour ; 4(2): 3754-3755, 2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-33366175

RESUMEN

In the present study, the complete mitochondrial genome of H. grayi was determined and annotated. The circular mitogenome is 16,959 bp in length and contains 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes, and a control region. Most of the PCGs start with ATG, but CO1 begins with a GTG start codon. Phylogenetic analysis revealed that H. grayi was strictly related to network pipefish Corythoichthys flavofasciatus with 100% bootstrap support value. This work provides basic molecular information that would be useful for further investigation on conservation genetics and evolutionary relationships of H. grayi.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA